

LEONARD G. JOHNSON

DETROIT RESEARCH INSTITUTE
P.O. BOX 36504 • GROSSE POINTE, MICHIGAN 48236 • (313) 886-7976

WANG H. YEE DIRECTOR

July, 1984

Page 1

Volume 14
Bulletin 3

THE SECRET OF ANALYZING FIELD FAILURES

DETAILS OF THE SECRET

I : NOTE THE NUMBER OF VEHICLES.

II: NOTE THE FAILURE MILEAGES.

III: NOTE THE NON-FAILURE MILEAGES IN THE INTERVALS
BETWEEN THE FAILURE MILEAGES, AS WELL AS ALL
NON-FAILURE MILEAGES PRIOR TO THE EARLIEST
FAILURE AND AFTER THE LATEST FAILURE.

IV: IN EACH MILEAGE INTERVAL BETWEEN FAILURES, AND IN THE MILEAGE INTERVAL PRIOR TO THE FIRST FAILURE, DIVIDE THE NUMBER OF FAILURES BY THE NUMBER OF ACTIVE VEHICLES IN THE MILEAGE INTERVAL.

V: FORM A CUMULATIVE SUM OUT OF THE QUANTITIES

CALCULATED IN EACH OF THE INTERVALS OF (IV),

THIS WILL GIVE THE AVERAGE NUMBER OF FAILURES

PER VEHICLE ACCUMULATED TO EACH OF THE FAILURE

MILEAGES.

DRI STATISTICAL BULLETIN

Volume 14 Bulletin 3 July , 1984

Page 2

EXAMPLE OF 15	VEHICLES	INTERVAL	NO. FAILED	NO. OF ACTIVE VEHICLES
5,350 Miles 12,100 Miles	unfailed unfailed	1	1	$13 + \frac{5,350 + 12,100}{18,805}$ = 13.93
18,805 Miles	FAILED —			10+ 395 + 8,595 12,424
19,200 Miles 27,400 Miles	unfailed unfailed	2	1	12, 424
31,229 Miles	FAILED			
32,000 Miles 37,800 Miles 42,400 Miles	unfailed unfailed unfailed	3	1	$6 + \frac{771 + 6,571 + 11,171}{18,128}$ $= 7.02$
49,357 Miles	FAILED —			
56,905 Miles 64,100 Miles	unfailed unfailed	4	1	$3 + \frac{7,548 + 14,743}{16,354}$ $= 4.36$
65,711 Miles	FAILED —			
68.000 Miles 72,000 Miles	unfailed unfailed			

Volume 14 Bulletin 3 July, 1984

Page 3

ENTROPY INCREMENT ANALYSIS PROGRAM

EXAMPLE OF 15 VEHICLES

The cumulative entropy to the last point in the previous segment = 0
(This would be zero for a first segment)

The number of mileage intervals . . = 4

NUMBER FAILED	NUMBER ACTIVE	LATEST MILEAGE	
1	13.93	18,805	
1	10.72	31,229	
1	7.02	49,357	
1	4.36	65,711	

LATEST LIFE	CUMULATIVE ENTROPY		
18,805	7.179813E-02		
31, 229	0.1650483		
49,357	0.3074733		
65,711	0.5366718		

GOODNESS-OF-FIT = .9983998

WEIBULL SLOPE = 1.573827

THETA = 100,054.50

B10 = 23,946.98

MEDIAN = 79,268.21

B90 = 169,975.60

Volume 14 Bulletin 3 July , 1984 Page 4

GRAPHICAL PRESENTATION OF THE RESULTS OF THE ANALYSIS

USE LOG, LOG PAPER.

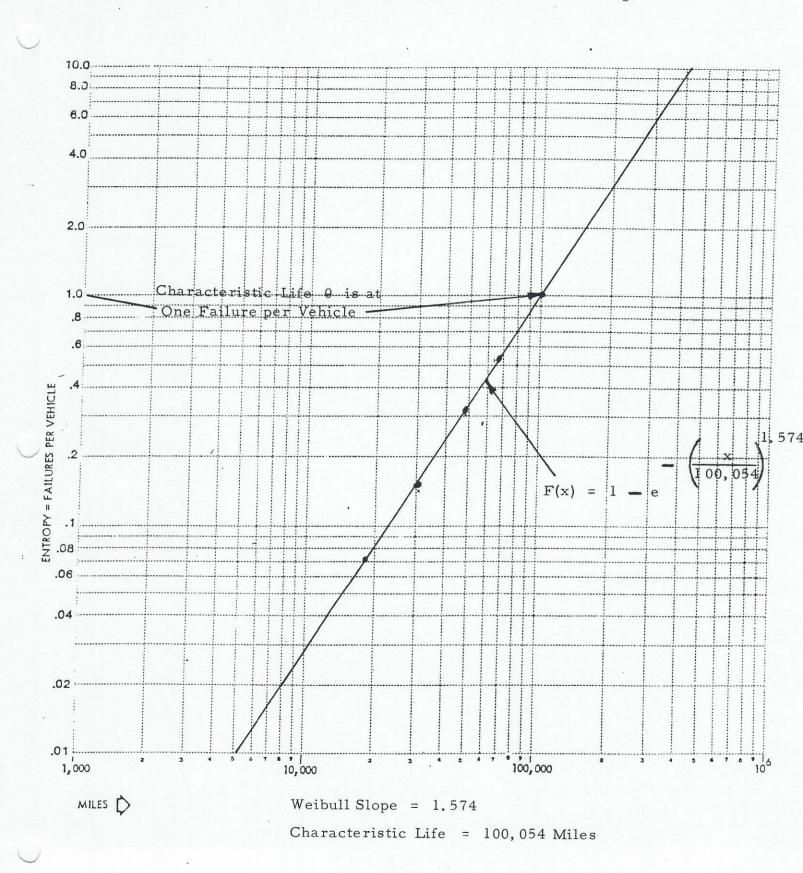
Take each FAILURE MILEAGE as an ABSCISSA on Log , Log Paper .

Take the accumulated FAILURES PER VEHICLE as the ORDINATE on Log, Log paper corresponding to the FAILURE MILEAGE.

THEN:

The SLOPE of the line passing through the points plotted on Log , Log paper as the WEIBULL SLOPE of the distribution of the miles to failure.

The CHARACTERISTIC LIFE of the distribution of miles-to-failure is at that point on the Log, Log Plot which has its ORDINATE at ONE FAILURE PER VEHICLE.


DRI STATISTICAL BULLETIN

Volume 14

Bulletin 3

July, 1984

Page 5

Volume 14

Bulletin 3

July, 1984

Page 6

HOW FAILURE PERCENTAGES AND ENTROPIES ARE RELATED

	F	8
	PERCENT FAILED	ENTROPY
	0%	0
	1 %	0.01005
	2%	0.02020
	5 %	0.05129
0 . 1	10%	0.10536
$\mathcal{E} = ln \frac{1}{1 - F}$	25%	0.28768
$F = 1 - e^{\varepsilon}$	3 9. 35%	0.50000
L=1-6	50%	0.69315
	63.2%	1.00000
	75%	1.38629
	90%	2.30259
	95%	2.99573
	98%	3.91202
	99%	4.60517
	100%	~

CONCLUSION

The ENTROPY technique turns out to be very useful in estimating the reliability to any target for any collection of similar vehicles which have been monitored for failure mileages and repairs.