LEONARD G. JOHNSON EDITOR DETROIT RESEARCH INSTITUTE
P.O. BOX 36504 • GROSSE POINTE, MICHIGAN 48236 • (313) 886-7976

WANG H. YEE

Volume 16

Bulletin 1

April, 1986

Page 1

THE LOG-PARAMETRIC APPROACH TO HANDLING TYPICAL SITUATIONS IN THE ECONOMICS OF TESTING PROGRAMS

INTRODUCTION

In a previous bulletin (Volume 14; Bulletin 5), dated October 1984, we discussed the Principles of Quantitative Reliability Management. The basic idea was that dollar gains and dollar losses determine the magnitude of a test and that the confidence involved is related to the C-Rank Theorem, which states that

 $R_c = Reliability (with Confidence c)$

= 1 - C-Rank of $(D+1)^{\frac{th}{-}}$ order statistics in (N+1),

where

N = Number of items tested (to a target)

D = Number of defectives (out of the N)

(The defectives fail before target life is reached)

In this bulletin we want to employ <u>Log-Parametric C-Ranks</u> instead of Non-Parametric C-Ranks, because in most practical situations this makes sense. So, as a result, we can state

$$R_{c} = 1 - \text{Log-Parametric C-Rank of (D + 1)}^{th} \text{ order statistics in (N+1)}$$

$$= \left(\frac{N - D + .7}{N + 1.4}\right)^{(c/1-c)}$$

With this as a basic relationship we present two typical situations and their solutions.

April, 1986

Page 2

BASIC DEFINITIONS AND FORMULAS

SYMBOLS

G = Dollars Gained per Good Item

L = Dollars Lost per Bad Item

c = Confidence Level (in favor of reliability)

Odds in Favor of Reliability when the Confidence is c

 K_{c} = Profitability Factor with Confidence c.

 R_{c} = Reliability with Confidence c.

N = Number of Items Tested (to a life target)

D = Number of Defectives (out of the N)

FORMULAS

$$R_{c} = \frac{\frac{K_{c} L}{K_{c} L + G}}{\ln\left(\frac{K_{c} L}{K_{c} L + G}\right)} \frac{\sqrt[4]{N}}{\sqrt[3]{55}}$$

$$\Theta'_{c} = \left[\frac{\ln\left(\frac{K_{c} L}{K_{c} L + G}\right)}{\ln\left(\frac{N - D + .7}{N + 1.4}\right)}\right]$$

$$\mathbf{c} = \frac{\mathfrak{S}_{\mathbf{c}}}{1 + \mathfrak{S}_{\mathbf{c}}}$$

April, 1986

Page 3

FIRST EXAMPLE OF A TYPICAL SITUATION

Suppose a test is run on 30 items to a desired target life of 1 000 hours with the following results:

28 items succeeded (ran 1000 hours without failure)

2 defective items (failed prior to 1000 hours)

QUESTION: If a good item (i.e., one which is able to survive 1000 hours) nets a gain of \$100, and if a defective item (i.e., one which does not last 1000 hours) causes a loss of \$800 due to warranty costs and other inconveniences, how confident are we of at least breaking even on the product in the long run?

What is the Median Profitability Factor?

SOLUTION

$$G = 100 , L = 800 , N = 30 , D = 2 , K_{c} = 1 .$$

$$G'_{c} = \begin{bmatrix} \frac{\ln \left(\frac{800}{800 + 100}\right)}{\ln \left(\frac{28.7}{31.4}\right)} & = \left(\frac{\ln .888889}{\ln .914013}\right)^{9.958592} & = 14.718 .$$

$$C = \frac{G_{c}}{1 + G_{c}} & = \frac{14.718}{15.718} & = .9364 \quad \text{(answer)}$$

Thus , there is 93.64% confidence of at least breaking even . The Median Profitability Factor (50% confidence) is given by the formula

$$K_{.50} = \frac{(N - D + .7) G}{(D + .7) L} = \frac{(28.7)(100)}{(2.7)(800)} = \frac{2870}{2160} = 1.329$$
 (answer)

(50% confident that gains will be at least 1.329 times as large as loses)

April, 1986

Page 4

SECOND EXAMPLE OF A TYPICAL SITUATION

It is known that each bad item (which does not last the required life) costs us \$250, while each good item (which lasts the required life) gain us \$100.

How large a sample N must be tested to the required life with 3 bad in order to give us 99% confidence of gaining twice as much as we lose in the long run ?

$$\frac{\text{SOLUTION}}{\text{c} = .99, \quad D = 3, \quad K_{c} = 2, \quad L = 250, \quad G = 100}$$

$$\mathfrak{S}_{c} = \frac{c}{1 - c} = \frac{.99}{1 - .99} = \frac{.99}{.01} = 99$$

Try N = 40

$$\mathfrak{S}_{c} = \frac{\left[\ln\left(\frac{500}{500 + 100}\right)}{\ln\left(\frac{37.7}{41.4}\right)}\right] = \left(\frac{\ln .833333}{\ln .910628}\right)^{11.4199191} = 2131.24$$

$$c = \frac{2131.24}{2132.24} = .9995 \qquad \text{(too many tested)}$$

$$\frac{\text{Try N} = 25}{\ln \left(\frac{500}{500 + 100}\right)} = \left(\frac{\ln \left(\frac{500}{500 + 100}\right)}{\ln \left(\frac{22.7}{26.4}\right)}\right) = \left(\frac{\ln .833333}{\ln .859846}\right) = 5.5489$$

$$c = \frac{5.5489}{6.5489} = .8473$$
 (not enough tested)

April, 1986 Page 5

Thus, we conclude that we must test 33 items to the required life and if 30 out of the 33 make it, we have 99.28% confidence of gaining twice as much money as we lose.

CONCLUSION

It can be seen that the Log-Parametric Ranking approach is a powerful tool in resolving sample size questions, as well as profitability questions arising out of testing programs for reliabilities of products required to last for specific life targets.