LEONARD G. JOHNSON

DETROIT RESEARCH INSTITUTE
P.O. BOX 36504 • GROSSE POINTE, MICHIGAN 48236 • (313) 886-7976

WANG H. YEE

Volume 9 Bulletin 7

January, 1980 Page 1

THE THEORY OF OPERATIONAL MAINTAINABILITY

FACTORS WHICH MUST BE CONSIDERED IN PROBLEMS OF PRODUCT MAINTAINABILITY

TIME FACTORS

- (1) The time to a failure (unscheduled repair)
- (2) The time to a scheduled repair (overhaul)
- (3) The time required to make a repair (down time)

RATE FACTORS

- (4) Failures per week (unscheduled repair per week)
- (5) Number of repairs which can be made per week
- (6) Scheduled repairs per week
- (7) Unscheduled repairs per week

SIZE FACTORS

- (8) Number of machines in the operation
- (9) Number of repairmen
- (10) Number of inoperable machines (length of repair queue)

Volume 9 Bulletin 7 January, 1980 Page 2

MACHINE TYPE	NO. OF MACHINES	WEIBULL PARAMETERS
1	N_{1}	(x, b, 0,)
2	N_2	(x2, b2, 02)
	•	(1) (2)
	•	• *
•		•
i	$^{ m N}_{ m i}$	(Xi, bi, Oi)
Ē	•	
÷	•	
•	•	•
k	$N_{\mathbf{k}}$	(Xk, bk, On)

 $\mathcal{E}_{t'}$ = Characteristic Life of each machine of Type i

MEAN NO. OF UNSCHEDULED REPAIRS NEEDED PER WEEK (i.e., Mean No. of Failures Per Week)

Mean No. of Failures Per Week of 40 Hours: $N_{1}\left(\frac{40-\alpha_{1}}{\theta_{1}-\alpha_{1}}\right)^{k_{1}} N_{2}\left(\frac{40-\alpha_{2}}{\theta_{2}-\alpha_{2}}\right)^{k_{2}} + \cdots + N_{k}\left(\frac{40-\alpha_{k}}{\theta_{k}-\alpha_{k}}\right)^{k_{k}} = F_{W}$ WEEKLY REPAIR CAPABILITY

Let N_R = Number of Repairmen

Let M_{+} = Mean Down Time

(Simultaneous Repair Rate Capability) = N_R repairs in M_t hours

No. of Repairs which can be made in a 40 hour week = $(40/M_t)$ Repairs Per Week Per Repairman. No. of Repairs N_R Repairmen can make per week of 40 hours = $\left(40\ N_R/M_t\right)$ Repairs Per Week

Denote this weekly repair capability by the symbol $\,W_{R}\,$.

Thus ,

$$W_{R} = \frac{40 N_{R}}{M_{t}}$$

THE NUMBER OF UNREPAIRED MACHINES EACH WEEK

Since the expected number of failures each week is \widehat{F}_W , and since we are capable of repairing W_R machines each week, it follows that the QUEUE of unrepaired machines grows at a rate equal to

$$\Delta_{W} = (\overline{F}_{W} - W_{R})$$
 Machines/Week (if $\overline{F}_{W} > W_{R}$)
 $\Delta_{W} = 0$ (if $\overline{F}_{W} < W_{R}$)

THE EFFECT OF SCHEDULED RENEWALS (OVERHAULS) - ALL MACHINES-

If each machine is completely renewed every \mathbf{x}_0 hours , then the weekly repair total (both scheduled and unscheduled repairs) will average out to

$$\overline{G}_{W} = \left(\frac{40}{x_{o}}\right) \sum_{i=1}^{k} \frac{N_{i} \left(\frac{x_{o} - \alpha_{i}}{\theta_{i} - \alpha_{i}}\right)^{\ell_{i}}}{\left(\frac{x_{o} - \alpha_{i}}{\theta_{i} - \alpha_{i}}\right)^{\ell_{i}}} + \left(\frac{40}{x_{o}}\right) \leq N_{i}$$
or
$$\overline{G}_{W} = \left(\frac{40}{x_{o}}\right) \left\{\sum_{i=1}^{k} \frac{N_{i} \left[1 + \left(\frac{x_{o} - \alpha_{i}}{\theta_{i} - \alpha_{i}}\right)^{\ell_{i}}\right]}{\theta_{i} - \alpha_{i}}\right\}$$

Where $(40/x_0)$ = the greatest integer in $40/x_0$

In case 40 is not exactly divisible by x then to G_W must be added the additional amount

 $\sum_{i=1}^{n} N_i \left(\frac{X_r - \alpha_i}{\Theta_i - \alpha_i} \right)^{-\beta_i}$

Where x_r = the remainder after dividing 40 by x_0

THE QUEUE OF UNREPAIRED MACHINES WHEN RENEWALS ARE SCHEDULED EVERY * HOURS (ON ALL MACHINES)

Each week the total number of unrepaired machines increase at the

rate

$$S_W = (\overline{G}_W - W_R)$$
 machines per week (if $\overline{G}_W > W_R$)
 $S_W = 0$ (if $\overline{G}_W < W_R$)

THE IDEAL RENEWAL SCHEDULE

The ideal renewal time x_0 is such that

$$\overline{G}_W = W_R$$

$$\frac{k}{\left(\frac{40}{x_0}\right)} \sum_{i=1}^{k} N_i \left[1 + \left(\frac{x_0 - \alpha_i}{\theta_0 - \alpha_i}\right)^{-\frac{1}{\theta_0}} \right] = \frac{40N_R}{M_t}$$

or
$$\frac{1}{1-1} N_{i} \left[1 + \left(\frac{\chi_{c} - \chi_{i}}{\theta_{c} - \chi_{i}} \right)^{\ell} \right] = \frac{N_{R} \chi_{c}}{M_{t}}$$

To find the ideal renewal period solve this equation for x

EXAMPLE OF HOW A REPAIR BACKLOG BUILDS UP AND ACCELERATES WHEN THERE IS NO SCHEDULED MAINTENANCE

EXAMPLE

A plant has 500 machines. These machines have a Characteristic Life of 1000 hours and a Weibull Slope of 2. There are 2 Repairmen on the payroll. The Mean Down Time for a machine failure is 8 hours. How large a backlog of unrepaired machines will be accumulated in 16 weeks?

WEEK NO. (i)	AVE. CUMULATIVE FAILURES	AVE FAILURES DURING THE WEEK	REPAIR CAPABILITY	REPAIR QUEUE	
1	0.8	0.8	10	0	
2	3.2	2,4	10	0	
3	7.2	4.0	10	0	
4	12.8	5.6	10	0	
5	20.0	7.2	10	0	
6	28.8	8.8	10	0	
7	39.2	10.4	10	0.4	
8	51.2	12.00	10	2.4	
9	64.8	13.6	10	6.0	
10	80.0	15.2	10	11, 2	
11	9 6.8	16.8	10	18.0	
12	115.2	18.4	10	26.4	
13	135.2	20.0	10	36.4	
14	156.8	21.6	10	48.0	
15	180	23.2	10	61.2	
16	204.8	24.8	10	76.0	
NOTE: x =	$N\left(\frac{x}{\theta}\right)^{b}$ 40 i	$ \begin{pmatrix} N = 500 \\ \theta = 100 \\ b = 2 \\ N_{T} = 2 \end{pmatrix} $)))	$V_{R} = \frac{40N_{R}}{M_{t}}$	

Volume 9

Bulletin 7

January , 1980

Page 6

QUESTIONS REGARDING THE PRECEDING EXAMPLE

QUESTION #1: How many repairmen are needed in order to fully provide for all repairs in the first 16 weeks?

SOLUTION: The weekly repair capability must be 24.8 Thus,.

$$W_{R} = \frac{40 N_{R}}{M_{t}} = 24.8$$

$$\frac{40 \text{ N}_{\text{R}}}{8} = 24.8$$

or
$$5 N_{R} = 24.8$$
, $N_{R} = 5$ repairmen needed

QUESTION #2: How many failures will occur in week # 52? How many repairmen will be needed then?

SOLUTION:

$$500 \left(\frac{2080}{1000}\right)^2 - 500 \left(\frac{2040}{1000}\right)^2 = 82.4$$

Thus, to fully provide for weekly failures for a full year, it will be necessary to have 82.4/5 = 17 repairmen by the end of the year.

(an additional repairman must be hired every 3 weeks)

QUESTION #3: For the same Weibull Slope (b = 2), what should the characteristic life θ be in order that no additional repairmen would be needed in one year?

SOLUTION: θ must be large enough to make the number of machine failures in week #52 equal to 10.

Thus,
$$500 \left(\frac{2080}{\theta}\right)^2 - 500 \left(\frac{2040}{\theta}\right)^2 = 10$$

$$\frac{2080^2}{\theta^2} - \frac{2040^2}{\theta^2} = \frac{10}{500} = \frac{1}{50}$$

$$\frac{1}{\theta^2} (2080^2 - 2040^2) = 1/50 , 164,800/\theta^2 = 1/50$$

$$\theta^2 = 8,240,000 \theta = 2871 hours$$

Volume 9

Bulletin 7

January, 1980

Page 7

CHECK:

$$500\left(\frac{2080}{2871}\right)^2$$
 - $500\left(\frac{2040}{2871}\right)^2$

500 (.5248802 - .5048867)

 $500 \text{ (.0199935)} = 9.99675 \approx 10 \text{ ok.}$

QUESTION #4: For the same characteristic life of 1000 hours, why would it be better to have machines with a Weibull Slope of Unity (b = 1) instead of the Weibull Slope two (b = 2)?

ANSWER

For two good reasons. These are

REASON #1: Fewer repairmen are needed.

In fact, the number of machine failures per week would be <u>constant</u> and equal to $500\left(\frac{40}{1000}\right)^1$ = 20 failures per week.

This would require 20/5 = 4 repairmen.

REASON #2: At the end of the year, the machines would still be theoretically like new instead of being all worn out as they are when b = 2.

QUESTION #5: What Weibull Slope b (assuming θ = 1000 hrs.) will allow us to get by with 8 repairmen for the first year?

SOLUTION: 8 repairmen can handle $8 \times 5 = 40$ failures a week. Hence, in week #52 there must not be more than 40 failures. This means that b must be such that

$$500\left(\frac{2080}{1000}\right)^{b} - 500\left(\frac{2040}{1000}\right)^{b} = 40$$

$$\int = 2.08^{b} - 2.04^{b} = \frac{40}{500} = \frac{4}{50} = .08$$

Volume 9 Bulletin 7

January, 1980 Page 8

A Weibull Slope of 1.44 will do .

QUESTION #6: Turn to next page.

QUESTION #7: In answer to Question #6 we found an average repair total of 161.28 in 16 weeks. Find a 90% confidence interval around the MEAN.

SOLUTION

MEAN = 161.28 Repairs

STANDARD DEVIATION =
$$\sqrt{161.28}$$
 = 12.70 Repairs

SKEWNESS = $\frac{2}{\sqrt{161.28}}$ = $\frac{2}{12.70}$ + .1575

t.05 = - $\left[1.645 - \left(\frac{.1575}{.2}\right)(.059)\right]$ = -1.599

t.95 = + $\left[1.645 + \left(\frac{.1575}{.2}\right)(.055)\right]$ = +1.688

Therefore, the 90% confidence interval on the total repairs required in 16 weeks is from

or from (140.97 to 182.72) Repairs in 16 Weeks.

QUESTION #6: If 2- machines are renewed each weekend, how much will this reduce the failure total in 16 weeks?

	SOLUTION	1	Donoin	1 1
Week#	Average Failures during the Week		Repair Queue	Ave. Cumulative Failures
1	$500 (.04)^2 = 0.$. 8000	-	0.8000
2	$20(.04)^2 + 480 \overline{(.08)}^2 - (.04)^{\overline{2}}$ = 2.	. 3360	-	3.1360
3	$20(.08)^2 + 460 \left[(.12)^2 - (.08)^2 \right] = 3.$. 8080	-	6.9440
4	$20(.12)^2 + 440 (.16)^2 - (.12)^2 = 5.$. 2160	-	12, 160
5	$20(.16)^2 + 420 \overline{(.20)^2 - (.16)^2} = 6.$	5600	-	18,720
6	$20(.20)^2 + 400 [(.24)^2 - (.20)^2] = 7.$	840	-	26.560
7	$20(.24)^2 + 380 \overline{(.28)^2} - (.24)^{2}$ = 9.	056	-	35.616
8	$20(.28)^2 + 360[(.32)^2 - (.28)^2] = 10$	0.208	0.208	45.824
9	$20(.32)^2 + 340 \overline{(.36)^2} - (.32)^{2}$ = 11	1.296	1.504	57.120
10	$20(.36)^2 + 320 \overline{(.40)^2 - (.36)^2} = 12$	2.320	3,824	69.440
11	$20(.40)^2 + 300 \overline{(.44)}^2 - (.40)^{\overline{2}}$ = 13	3.280	7.104	82.720
12	$20(.44)^2 + 280 \overline{(.48)^2 - (.44)^2} = 14$	1.176	11.280	96.896
13	$20(.48)^2 + 260 \overline{(.52)^2} - (.48)^2$ = 15	5.008	16.288	111.904
14	$20(.52)^2 + 240[(.56)^2 - (.52)^2] = 15$	5.776	22.064	127.680
15	$20(.56)^2 + 220[(.60)^2 - (.56)^2] = 16$. 480	28.544	144.160
16	$20(.60)^2 + 200[(.64)^2 - (.60)^2] = 17$	7.120	35, 664	161.280
	FOR DIFFERENTIAL METHOD: $d_1 = +1.536$ $T_n = 1.632 \text{ n}$	1032		1
-	$d_2 =064$		$S_n = \frac{.06}{6}$	$\frac{4n}{(1 + 75n - n^2)}$