STATISTICAL METHODS FOR THE STUDY OF FIELD FAILURES

FIELD PERFORMANCE

- (1) Actual use conditions and the resulting experiences in customer hands.
- (2) Basic theory of failure and survival processes in real life.
- (3) How can these failure and survival processes be systematically studied?
- (4) Is it possible to set up a universal and standard procedure for evaluating and predicting field performances?
- (5) Yes, there is a basic law in the universe of entities subject to failure and survival processes, including the life and death processes in biological systems.
- (6) What is a failure process?
 - (A) Deterioration
 - (B) Accumulated Hazard (rising risk) (entropy)
 - (C) Probability of Interuption of normal health operation
- (7) How can deterioration or break-down of successful operation be measured?
- (8) How is such a measure related to Weibull statistics?
- (9) There is a scientific concept which easily handles all failure and survival or life and death processes. What is it?
- (10) This same concept is an important law in Thermodynamics.

THE SECRET OF EVALUATING A PRODUCT'S FIELD PERFORMANCE

- (11) How is performance measured?
 - (A) Service time must be kept track of. (clock or hour meter or odometer)
 - (B) Failure must be counted, i.e., failures per machine or failures per system in service for a given time.
 - (C) In general, a machine or system will have several failures during its course of service, and not just one failure.
- (12) How can Failure per Machine be scientifically measured?

THE SCIENTIFIC BASIS OF MEASURING PROGRESS OF A FAILURE PROCESS

- (13) A failure process in real life is most conveniently measured by a measurement concept which has been used in scientific studies for many centuries.
- (14) This handy measurement concept applicable to failure processes is the concept called ENTROPY.
- (15) What in the world is Entropy?
- (16) It is the natural logarithm of a probability with a minus sign in front to make it positive.
- (17) What type of probability is used in calculating Entropy?

 A probability of success (i.e., probability of survival in real life or service)
- (18) What is the common name for survival probability to a specified time target?

Reliability (for that time in service)

- (19) So, E N T R O P Y for any service period is expressed as

 ENTROPY(for serv. period) =-ln(RELIABILITY)(for serv. period)
- (20) The symbol for Entropy is &
- (21) The symbol for Reliability is R
- (22) So, $\epsilon = -\ln R$

(23) How are logarithms of numbers related to the logarithms of corresponding reciprocals ?

Answer: Same numerical values , but opposite signs

- (24) So, $-\ln R = +\ln 1/R$
- (25) So, $\boldsymbol{\varepsilon} = \ln 1/R$
- (26) The symbol for the variable service time is x.
- (27) So, if we talk about the Entropy at service time x we write $\xi(x)$
- (28) Likewise, if we talk about the Reliability for service time x we write R(x).
- (29) So, $\xi(x) = \ln[1/R(x)]$
- (30) What is Reliability for a service period?

 Answer: The survival probability for that period.
- (31) What then is failure probability during the same service period?

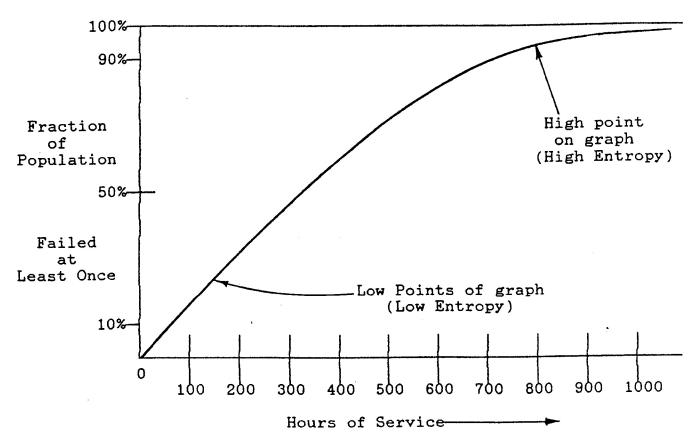
 Answer: 1 Survival Probability or 1 Reliability
- (32) Thus, F = 1 RFailure Probability = 1 Reliability
- (33) How can we find R (Reliability) from § (Entropy) ?
- (34) Answer: By solving the basic formula & = ln 1/R for R
- (35) This yields $1/R = e^{\epsilon}$ or $R = e^{-\epsilon}$ RELIABILITY = $e^{-\epsilon}$ This yields $e^{-\epsilon}$
- (36) So, according to (32) above

 $F = 1 - e^{-E}$

(37) What does an $\underline{\mathbf{F}}$ formula give us ?

It gives us a graph showing how failure probability grows with time in service. We put <u>Time in Service</u> along the x-axis (since x is our service time variable). We put the failure probability in the service time x as an ordinate F(x) along the y-axis of our graph paper. In this way the failure process in the product being studied becomes fully described in terms of probabilities.

- (38) Another name for failure probability in a given service time is <u>fraction of population failed</u> in service time
- (39) Failed means <u>"failed at least once"</u> (considering repairable systems)
- (40) As service time increases, so does the fraction of the population failed. (i.e., the longer the service time the larger the fraction of population which to be failed at least once.)
- (41) The more failures in a population the larger the ENTROPY
- (42) Thus, Entropy increases with service time --- because there are more failures in a population with increased service time.
- (43) The higher we move up on an F graph the greater the Entropy



(44) The formula for Entropy in terms of the Failure Fraction F is

$$\mathbf{g} = \ln \frac{1}{1 - F}$$

INVERSE:

(45) So, we can construct the Table $F = 1 - e^{-\xi}$

F Fraction of Population (at least once)	€ (Entropy)
0%	0
1%	.01005
5%	.05129
10%	.10536
20%	.22314
30%	. 35667
39.25%	.50000
40%	.51038
50% (Median Entr	copy to a Failure) .69315
60%	.91629
63.2% (Ave. Entr	opy to Failure) 1.00000
70%	1.20397
80%	1.60944
90%	2.30259
95%	2.99573
99%	4.60517
100%	œ

$$F = 1 - e^{-(E/1)}$$
 $E = \ln \frac{1}{1 - F}$

1 = MEBF

(46) According to the relation $F = 1 - e^{-\epsilon}$, what is the Average Entropy to a Failure?

Answer: 1 Unit of Entropy .

(47) Why is this?

Answer: Because the formula $F = 1 - e^{-(E/1)}$ is an exponential distribution of Entropy with an average value of <u>unity</u> for the Entropy.

(48) Since the <u>Average Entropy per Failure</u> is unity, how can <u>Entropy</u> be used as a measurement of field failure rates.

<u>Answer:</u> Simply by remembering that the <u>Average No. of Failures</u> per <u>Machine</u> or system in service is equal to the <u>Accumulated</u> <u>Entropy</u> in any service time .

(49) What did Weibull do that made him so famous in studying failure processes?

Answer: He took Entropy to be a simple power function, of the form $\mathcal{E}(x) = (x/\theta)^b$. This give us the Weibull distribution

$$F(x) = 1 - e^{-(x/\theta)^b}$$

2-parameters: where b = Weibull slope $\theta = Characteristic Life$

(50) There is also the 3-parameter Weibull distribution

$$F(x) = 1 - e^{-[(x - a)/(\theta - a)]b}$$

Whose Entropy function is $\mathbf{g}(\mathbf{x}) = \begin{bmatrix} \mathbf{x} - \mathbf{a} \\ \mathbf{\theta} - \mathbf{a} \end{bmatrix}^{\mathbf{b}}$

where a = Minimum Life; b = Weibull slope; θ = Characteristic Li

(51) In a Weibull distribution what identifies the Characteristic Life?

Answer

At the Characteristic Life θ the Entropy $\mathbf{g} = 1$. (In other words, by the time the Characteristic Life has expired there is on the average <u>one failure per machine</u>)

(52) If an \underline{F} curve has a 2-parameter Weibull formula, what can be said of the $\underline{Entropy}$ plot versus service time?

Answer

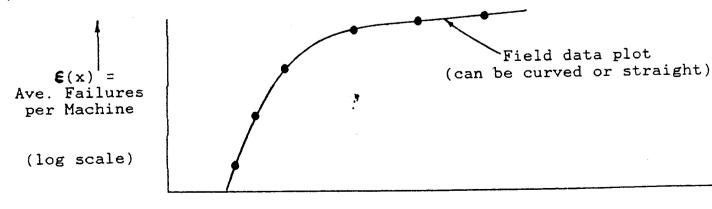
The Entropy plot vs. Service Time is <u>linear</u> on <u>log-log paper</u>. This is because the relation

$$\mathbf{g} = (x/\theta)^b$$

yields $\ln \varepsilon = b \ln x - b \ln \theta$

Which comes out as a straight line if $\underline{\text{Time }}\underline{x}$ is made abscissa on log-log paper and the Entropy (i.e. Failure per Machine) is made into the ordinate on log-log paper.

- (53) Multiple Weibull processes will show <u>changing slopes</u> on log-log paper plots of <u>Failure per Machine</u> vs. <u>Time in Service</u>.
- (54) So, the secret of mathematically describing the failure process of a machine or consumer product in the field is to take log-log paper and make the horizontal axis to represent Service Time and the vertical axis represent Ave. Failure per Machine (as actually observed within that service time).
- (55) The field data plot will look as follows:



Service Time x (log scale)